home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Aminet 2
/
Aminet AMIGA CDROM (1994)(Walnut Creek)[Feb 1994][W.O. 44790-1].iso
/
Aminet
/
comm
/
term
/
term34Source.lha
/
QuickSort.asm
< prev
next >
Wrap
Assembly Source File
|
1993-07-16
|
3KB
|
177 lines
***
*
* A replacement for Lattice's qsort
*
* This one is a stack miser and is (hopefully) faster.
*
* The algorithm is taken from:
*
* Stubbs, Webre, "Data Structures with Abstract
* Data Types and Pascal" (Pacific Grove: Brooks/Cole Pub. Co
* p. 256.
*
* Modifications:
*
* Middle element of array is used as partition element.
* Additional logic is provided for tail recursion optimization:
* Recursive calls sort arrays at most half the size of the array
* sorted during the previous recursive call -> little stack use.
*
***
csect text,0,0,1,2
XDEF _qsort
_qsort:
movem.l D5/D4/D6/D7/A3,-(SP)
move.l 36(SP),A3
move.l 32(SP),D7
move.l 28(SP),D4 ; number of elements in array
move.l 24(SP),D5 ; bottom of array
; calculate size of array
move.l D4,D1 ; low word in right
swap D1 ; high word in D1
mulu D7,D4
mulu D7,D1 ; multiply
swap D1 ; shift high portion
clr.w D1 ; mask high bits
add.l D1,D4 ; add partials
sub.l D7,D4 ; back up one
add.l D5,D4 ; make into address
; calculate bit position to find middle
moveq #-1,D6
cb0:
addq.l #1,D6
btst D6,D7
beq cb0
bsr quick2
movem.l (SP)+,D5/D4/D6/D7/A3
rts
;
; exchange contents of A0, A1
;
exch:
move.l D7,D1
bra.s ex1
ex2:
move.b (A0),D0
move.b (A1),(A0)+
move.b D0,(A1)+
ex1:
dbra D1,ex2
rts
; in: D5, right
quick2: movem.l D3/D2,-(SP)
quick2nr:
cmp.l D5,D4
bls q1 ; if left < right
; At this point, we wish to find middle of array
; w/o multiplying or dividing.
; After finding size of array, in bytes,
; we test hbit. This bit will be set if we
; are halfway between elements.
move.l D4,D1
sub.l D5,D1 ; calculate size of array
btst D6,D1
beq.s q3
sub.l D7,D1
q3:
lsr.l #1,D1 ; swap(d[left], d[mid]);
add.l D5,D1
move.l D1,A0
move.l D5,A1
bsr exch
move.l D4,-(SP)
move.l D5,-(SP)
jsr (A3)
addq.l #8,SP
tst.l D0
ble.s q2 ; if d[left] > d[right]
move.l D5,A0
move.l D4,A1
bsr exch ; swap(d[left], d[right]);
q2:
move.l D5,D3 ; j := left
move.l D4,D2 ; k := right
q4: ; repeat
add.l D7,D3 ; j := j + 1
move.l D5,-(SP)
move.l D3,-(SP)
jsr (A3)
addq.l #8,SP
tst.l D0 ; until d[j] >= d[left]
blt q4
q5:
sub.l D7,D2 ; k := k - 1
move.l D5,-(SP)
move.l D2,-(SP)
jsr (A3)
addq.l #8,SP
tst.l D0 ; until d[k] <= d[left]
bgt q5
cmp.l D3,D2
bls.s q6 ; if j < k
move.l D2,A1
move.l D3,A0
bsr exch ; swap(d[j], d[k])
q6:
cmp.l D3,D2
bcc q4 ; until j > k
move.l D2,A1
move.l D5,A0
bsr exch ; swap(d[left], d[k])
; this is the recursive part. Calculate sizes of
; recursive calls to ensure smaller array is done
; recursively and larger non-recursively.
move.l D2,D3
sub.l D7,D2 ; k - 1
add.l D7,D3 ; k + 1
move.l D2,D0
sub.l D5,D0 ; (k - 1) - left
move.l D4,D1
sub.l D3,D1 ; right - (k + 1)
cmp.l D0,D1
bge.s q7
move.l D5,-(SP)
move.l D3,D5
bsr quick2 ; quick2(k + 1, right)
move.l (SP)+,D5
move.l D2,D4
bra quick2nr ; quick2(left, k - 1)
q7:
move.l D4,-(SP)
move.l D2,D4
bsr quick2 ; quick2(left, k - 1)
move.l (SP)+,D4
move.l D3,D5
bra quick2nr ; quick2(k + 1, right)
q1:
movem.l (SP)+,D3/D2
rts
END